Handhabung von Komplexität in flexiblen Produktionssystemen - Factory Innovation
Produktionsplanung

Handhabung von Komplexität in flexiblen Produktionssystemen

Kundenindividuelle Produkte zu Kosten der Massenproduktion

Lesedauer: 8 Minuten

03. Oktober 2021 von Michael Vorspel-Rüter und Henrik Wienholdt und Robert Schmitt/RWTH Aachen

Um im globalen Wettbewerb zu bestehen, müssen sich Unternehmen in Hochlohnländern durch kundenindividuelle Produkte kombiniert mit kundenspezifischen Dienstleistungen von Anbietern aus Niedriglohnländern differenzieren. Einhergehend mit der zunehmenden Komplexität dieser Produkte wird auch die Steuerung der zugehörigen Produktionssysteme aufwendiger. Ein Ansatz zur Handhabung derartiger Systeme wird aktuell im Exzellencluster „Integrative Produktionstechnik für Hochlohnländer“ an der RWTH Aachen erarbeitet, mit dessen Hilfe es ermöglicht wird, Produktionssysteme dahingehend zu gestalten, dass kundenindividuelle Produkte zu Kosten der Massenproduktion hergestellt werden können.

Durch den sich verschärfenden globalen Wettbewerb sind Unternehmen in Hochlohnländern gezwungen, sich über individuelle und qualitativ hochwertige Produkte im Markt zu positionieren [1]. Aufgrund der Konkurrenz aus Niedriglohnländern müssen dabei die Herstellkosten, trotz erhöhter Flexibilität in Planung und Produktion, möglichst niedrig gehalten werden [2]. Dafür ist es notwendig, das Polylemma der Produktionstechnik (Bild 1) aufzulösen und die Gegensätze zwischen Scale (Erzielung von Skaleneffekten) und Scope (individuelle, flexible Produktion) sowie Wert- und Planungsorientierung aufzuheben.

schmitt1
Bild 1: Polylemma der Produktionstechnik [3].

Der Exzellenzcluster „Integrative Produktionstechnik für Hochlohnländer“ an der RWTH Aachen beschäftigt sich seit 2006 mit dieser Problemstellung. Als eine Teillösung des Dilemmas Scale und Scope wird eine Konfigurationslogik entwickelt, die es ermöglicht, kundenindividuelle Produkte zu Kosten der Massenproduktion zu fertigen. Hierzu wurde ein umfassendes Beschreibungsmodell eines Produktionssystems erarbeitet. Das Vorgehen zur Erstellung des Modells, die explizite Berücksichtigung von Komplexität und der weitere Forschungsbedarf werden im Folgenden dargestellt.

Stand der Technik bei Produktionssystemen

Die Modellierung eines Beschreibungsmodells eines Produktionssystems erfordert, die Vielzahl von Begriffsdefinitionen von Produktionssystemen zu analysieren und auszuwerten. Produktion nach Dyckhoff wird als betrieblicher Wertschöpfungsprozess definiert, der die Transformation von Material, Informationen, Diensten oder Rechten beschreibt, die entweder Input- oder Outputfaktoren des Prozesses darstellen [4]. Ein System wird als ein Kollektiv von Objekten beschrieben, die miteinander agieren [5]. Somit kann eine Definition für ein Produktionssystem abgeleitet werden, welches als beschreibendes Element der ganzheitlichen Organisation der Produktion verstanden wird [6]. Damit werden alle notwendigen Konzepte, Methoden und Werkzeuge für einen effektiven und effizienten Transformationsprozess der betrieblichen Inputfaktoren in Produkte und Dienstleistungen definiert. Diese Definition umfasst eine ganzheitliche Betrachtungsweise des Produktionssystems und somit explizit alle direkten und indirekten Wertschöpfungsprozesse [7].

Um zu verstehen, welche Konzepte ein erfolgreiches Produktionssystem ausmachen, ist es sinnvoll, Praxisbeispiele in folgende Ansätze zu unterteilen [8]:

  • Taylorismus,
  • teilautonome Gruppenarbeit und
  • Toyota Produktionssystem (TPS).

Taylorismus bezeichnet dabei die taktgebundene Massenfertigung zur Erzielung von Skaleneffekten [9]. Dem gegenüber steht die teilautonome Gruppenarbeit, bei der durch Flexibilisierung eine Produktivitätssteigerung erreicht wird [8]. Einen weiteren Ansatz verfolgt Toyota mit dem TPS. Kernpunkt des Ansatzes ist die Vermeidung von Verschwendung. Dazu sind Methoden wie Kanban oder Kaizen entstanden, die heutzutage in vielen Unternehmen angewendet werden [10, 11].

Ein umfassendes Modell zur Beschreibung und Erklärung von Produktionssystemen

Das im Exzellenzcluster definierte Rahmenwerk für Produktionssysteme umfasst die gesamte Werkschöpfungskette und bietet somit einen ganzheitlichen Blick auf den Objektbereich Produktionssystem. Dabei wird der Prozess von der Rohstoffbeschaffung über die Verarbeitung bis zum Vertrieb des fertiggestellten Produkts betrachtet und erfasst. Weitere Aspekte, die betrachtet werden, sind zum einen der Arbeitsmarkt als Lieferant für fähige Mitarbeiter und zum anderen der Technologiemarkt, der die Fertigungs- und Montagetechnologie im Unternehmen beeinflusst. In Anlehnung an Porters „Wertkette“ ist der Produktionsprozess das entscheidende Element des Modells [12]. Dabei werden alle Elemente des Produktionssystems im Rahmen eines umfassenden Qualitätsmanagement-Systems betrachtet.

Das Modell wurde durch ein mehrstufiges Verfahren bearbeitet und detailliert (Bild 2). Im definierten Produktionssys-tem (1) wurden Partialmodelle bzw. Submodelle wie Beschaffung oder das Qualitätsmanagement identifiziert (2). Die Beschreibungsmerkmale der Partialmodelle wurden in Analogie zur morphologischen Analyse zusammengestellt (3). Zur visuellen Darstellung wurde die objektorientierte Modellierungssprache „Unified Modeling Language“ (UML) verwendet. Mit UML können die in der Analyse festgestellten Interdependenzen zwischen den Beschreibungsmerkmalen sowie die Definitionen von Wirkbeziehungen optimal dargestellt werden (4). Die Zusammenführung der Subsysteme mit den übergreifenden Wirkbeziehungen bildet den letzten Detaillierungsschritt des Beschreibungsmodells (5).

Eine stetige Weiterentwicklung des Modells erfolgt im Rahmen des Projektes an der RWTH Aachen. Neben der Vervollständigung der Morphologie werden die Abhängigkeiten zwischen den Beschreibungsmerkmalen weiter detailliert. Dazu wird die Methode der Simulation eingesetzt, um diese Abhängigkeiten zu prüfen und gegebenenfalls zu ergänzen. Das so entwickelte Modell bildet eine Grundlage für die Konfigurationslogik.

Komplexität in Produktionssystemen

Eine wesentliche Eigenschaft von Produktionssystemen ist, dass die vielen, teilweise dynamischen Einflussfaktoren die Beherrschung des Systems erschweren. Um eine Konfigurationslogik zu entwickeln, ist es notwendig, diese Komplexität handhabbar zu machen. Komplexität beschreibt dabei die Eigenschaft eines Systems, eine Vielzahl an Zuständen oder Verhaltensweisen annehmen zu können [13]. Komplexität kann somit verstanden werden als die Menge an Informationen, die benötigt wird, um das System zu beschreiben sowie die Ungewissheit aufzulösen, die durch die Komplexität impliziert wird. Hierbei ist die Unterscheidung zwischen Kompliziertheit und Komplexität ein wichtiger Aspekt. Kompliziertheit äußert sich beispielsweise in einem System mit einer Vielzahl von Elementen und Interdependenzen, die jedoch durch strukturierte Ansätze gehandhabt und beherrscht werden können. Komplexität hingegen zeichnet sich dadurch aus, dass die Aspekte der Kompliziertheit durch Unvorhersehbarkeit und Unplanbarkeit erweitert werden [14]. In der Wissenschaft der Kybernetik wird Komplexität durch die Größe „Varietät“ ausgedrückt, welche die Anzahl der möglichen Zustände eines Systems bezeichnet. Dies beschreibt jedoch nach obiger Definition nur die Kompliziertheit; erst die Dynamik und die damit einhergehende Unvorhersehbarkeit und Unplanbarkeit führt zu Komplexität.

schmitt2
Bild 2: Vorgehen zur Entwicklung des Modells.

Aufgrund der Tatsache, dass ein Produktionssystem aus komplexen und komplizierten Bestandteilen besteht, muss das Modell einerseits strukturierende Ansätze zur Reduktion der Kompliziertheit bereitstellen. Auf der anderen Seite muss es Möglichkeiten bieten, die komplexen Bestandteile – die so genannten Komplexitätstreiber – zu analysieren. Unter Komplexitätstreibern werden alle Einflussfaktoren verstanden, die die Komplexität erhöhen [15]. Sie können für alle Partialmodelle des Produktionssystems identifiziert werden. Es kann generell zwischen zwei verschiedenen Arten von Komplexitätstreiben unterschieden werden:

  • Dynamik und
  • Anzahl bzw. Vielzahl.

Entscheidend für die Bewertung und Reduktion der Komplexität und ihrer Treiber ist die Messbarkeit dieser Elemente. Als ein Beispiel für einen Komplexitätstreiber der Dynamik kann die Schwankung in der Produktionsqualität genannt werden, die beispielsweise durch die Standardabweichung messbar gemacht werden kann.

Komplexitätsoptimale Konfiguration des Produktionssystems

Um Produktionssysteme komplexitätsoptimal zu konfigurieren, müssen durch eine Analyse die Komplexitätstreiber und deren Messgrößen ermittelt werden. Für die Analyse ist es sinnvoll, die Komplexität zu klassifizieren. Suh [16] unterscheidet beispielweise vier Arten der Komplexität:

  • imaginäre Komplexität,
  • reale Komplexität,
  • zeitabhängige periodische Komplexität und
  • zeitabhängige nicht-periodische Komplexität.

Imaginäre und zeitabhängige periodische Komplexität zeichnen sich dadurch aus, dass sich diese Arten der Komplexität durch systematisches Vorgehen reduzieren lassen. Imaginäre Komplexität entsteht, wenn die vorliegenden Informationen über ein Systemverhalten unzureichend bzw. mangelhaft sind. Durch zusätzliche Informationen über das Gesamtsystem oder dessen Verhalten lässt sich diese Komplexität vermindern. Periodische Komplexität ist durch eine Zeitabhängigkeit gekennzeichnet. Regelmäßige Neustarts des Systems – also das Zurücksetzen in den Ausgangszustand – führen dabei zu einer deutlichen Reduktion der Komplexität. Suh nennt als einfachstes Beispiel für die Verringerung einer zeitabhängigen periodischen Komplexität das regelmäßige Entfernen von Spänen in einem spanenden Fertigungssystem [16]. Eine Gestaltungsrichtlinie für nicht-periodische Komplexität ist die Überführung in den Zustand der periodischen Komplexität.

Weitere Gestaltungsrichtlinien ergeben sich zum Beispiel aus der geschichtlichen Betrachtung. Bereits die Vorreiter der weltweiten Qualitätsbewegung, Joseph Juran und William Edwards Deming, erkannten, dass die Komplexität eines Systems oder Produktes lediglich auf einen geringen Teil seiner Komponenten zurückzuführen ist. So existiert beispielsweise eine kleine Anzahl besonders schwer handhabbarer Prozessschritte oder nicht systematischer Fehler, die das Gesamtsystem in großem Umfang beeinflussen [17]. Durch die Identifikation dieser verhältnismäßig kleinen Gruppe von Komplexitätstreibern und einer bewussten Konzentration von Ressourcen zu deren Beseitigung lässt sich Komplexität in einem System erfolgreich vermindern.

Ausblick und weiterer Forschungsbedarf

Um die Ansätze von Suh für die Komplexitätsreduktion in Produktionssystemen nutzen zu können, erfolgt im Rahmen des Exzellenzclusters als Basis für die Erarbeitung spezifischer Gestaltungsrichtlinien eine umfassende Identifikation und Klassifizierung messbarer Komplexitätstreiber. Die neuen Gestaltungsrichtlinien werden im weiteren Projektvorgehen entwickelt und bilden gemeinsam mit dem Beschreibungsmodell die Grundlage für eine Konfigurationslogik, die die Wirkbeziehungen der Systemelemente eines Produktionssystems aufzeigt und so zu einer Konfiguration der komplizierten Bestandteile des Produktionssystems führt. Zusätzlich kann durch Berücksichtigung der komplexen Bestandteile die Komplexität bzw. die Dynamik der Produktionssysteme handhabbar gemacht werden, indem die Ansätze von Suh adaptiert und operationalisiert werden.

Die vorgestellten Arbeiten werden von der Deutschen Forschungsgemeinschaft DFG im Rahmen des Exzellenzclusters „Integrative Produktionstechnik für Hochlohnländer“ gefördert.

ExzellenzKomplexitätKonfigurationProduktionssystemQualitätsmanagement


Literatur:

[1] Schmitt, R.; Schmitt, S.: Das Aachener Qualitätsmodell und der Einsatz präventiver QM-Methoden. In: Thomann, H. J. (Hrsg.): Der Qualitätsmanagement Berater. Köln 2008.
[2] Fleischer, J.; Ender, T.; Wienholdt, H.: Ein simulationsgestütztes Optimierungskonzept für Produktionssysteme. In: ZWF 101 (2006) 9, S. 480-485.
[3] Schuh, G.; Kreysa, J.; Orilski, S.: Integrierte Produktionstechnik. In: Schuh, G.; Klocke, F.; Brecher, C.; Schmitt, R. (Hrsg.): Excellence in Production. Aachen 2007.
[4] Dyckhoff, H.: Grundzüge der Produktionswirtschaft. Berlin 1998.
[5] DIN 19226 Teil 5: Regelungstechnik und Steuerungstechnik - Funktionelle Begriffe. Berlin 1994.
[6] Schuh, G.: Produktionsplanung und -steuerung – Grundlagen, Gestaltung und Konzepte. 3. Auflage, Berlin 2006.
[7] Schmitt, R.; Beaujean, P.: Selbstoptimierende Produktionssysteme. In: ZWF 102 (2007) 9, S. 520-524.
[8] Bullinger, H.-J.; Korge, A.; Lentes, H.-P.: Produktion und Arbeitspolitik - Herausforderungen und Perspektiven im Rahmen der Globalisierung. In: Forum Automobilindustrie, 1999, S. 339-358.
[9] Taylor, F.: Die Grundsätze der wissenschaftlichen Betriebsführung. München 1913.
[10] Ohno, T.: Das Toyota Produktionssystem. Frankfurt/Main 1993.
[11] Womack, J.; Jones, D. und Roos, D.: Die zweite Revolution in der Automobilindustrie: Konsequenzen aus der weltweiten Studie aus dem Massachusetts Institute of Technology. 3. Auflage, Frankfurt/Main 1991.
[12] Lindemann, U.; Reichwald, R.; Zäh, M.: Individualisierte Produkte - Komplexität beherrschen in Entwicklung und Produktion. Berlin 2006.
[13] Schwaninger, Markus: Systemtheorie. St. Gallen 2004.
[14] Schuh, G.; Gottschalk, S.; Kupke, D.: Individualisierte Produktion – Flexible Konfigurationslogik zur Gestaltung von integrativen Produktionssystemen. In: wt Werkstattstechnik online 98 (2008) 4, S. 285-290.
[15] Meyer, C. M.: Integration des Komplexitätsmanagements in den strategischen Führungsprozess der Logistik. Bern 2007.
[16] Suh, N. P.: Complexity - Theory and Applications. Oxford 2005.
[17] Koch, R.: Das 80/20 Prinzip. Mehr Erfolg mit weniger Aufwand. 2. Aufl., Frankfurt/Main 2004.




Das könnte Sie auch interessieren

Anbieterportal


alle Anbieter
Sharer Icon: facebookSharer Icon: TwitterSharer Icon: LindekInSharer Icon: XingSharer Icon: EnvelopeSharer Icon: Print

Wir verwenden Cookies, um die Nutzererfahrung stetig zu verbessern. Mehr Erfahren.

We use cookies to constantly improve our users’ experience. Learn more.

Essentielle Cookies

Essential Cookies

Cookie Settings
Speichert Einstellungen, die hier getroffen werden. (1 Jahr)

Cookie Settings
Saves selected settings. (1 Year)

Statistik

Statistics

Google Analytics | Google LLC | Datenschutz
Cookie von Google für Website-Analysen. Erzeugt statistische Daten darüber, wie der Besucher die Website nutzt. Alle Informationen werden anonymisiert gespeichert. (2 Jahre)

Google Analytics | Google LLC | Privacy Notice
Cookie used by Google for web site analysis. Collects statistical data on how visitors use the website. This data does not contain personal information. (2 years)