Technologien

Autonomes Verhalten und Künstliche Intelligenz

Lesedauer:  4 Minuten

Eigentlich ist schon alles über Künstliche Intelligenz (KI) gesagt, nur noch nicht von jedem – so könnte man im Sinne von Karl Valentin meinen und sich dann doch aufgefordert sehen, einen weiteren Beitrag über dieses spannende Gebiet zu schreiben. Auf der anderen Seite ist es generell schwer, den Begriff Künstliche Intelligenz exakt zu definieren bzw. einzugrenzen. Eine solche Eingrenzung ist jedoch nötig, wenn man die Beziehung zwischen Autonomie und Künstlicher Intelligenz im Speziellen charakterisieren möchte. Der vorliegende Beitrag für das Schwerpunktheft „Autonomie“ nähert sich daher unter genau diesem Gesichtspunkt dem Begriff der künstlichen Intelligenz an und thematisiert einige zentrale Aspekte in diesem zukunftsweisenden Kontext.

Ursprüngliches Ziel der künstlichen Intelligenzforschung war es, menschliches Verhalten zu approximieren. Es ist bis heute dabei ein offenes Problem, ob in diesem Zusammenhang das menschliche Verhalten nur unterstützt oder sogar komplett abgebildet werden soll. Um autonomes Verhalten – das Leitthema des vorliegenden Beitrags – zu initiieren, müssen sowohl unterstützende als auch ersetzende Maßnahmen wechselseitig charakterisiert werden. KI steht also stets in Beziehung zu menschlichem Verhalten:

KI und menschliches Verhalten – der Begriff der „Autonomie“

Es ist an dieser Stelle nicht möglich, die generelle Unterscheidung, ob ein Mensch autonom handelt bzw. eine Maschine oder System autonom handelt, zu thematisieren. Bevor wir uns am Ende des Beitrags der Fragestellung zuwenden, wann künstliche Intelligenz die menschliche Intelligenz generell ersetzen bzw. sogar überwinden kann („Begriff der Technologischen Singularität“), wollen wir uns im Folgenden nun zunächst mit dem sogenannten zugrundeliegenden allgemeinen Autonomiebegriff auseinandersetzen.

Um sogenannte „Autonomie“ zu erreichen, ist es innerhalb der Entwicklungspsychologie zentral, lernendes Verhalten zu initiieren. Dieser psychologische Aspekt kann abgeleitet als eines der wesentlichen Leitkriterien von KI angesehen werden: Lernendes Verhalten ist nämlich KI-Systemen immanent. Vielleicht ist es sogar das einzige Kriterium, das allen KI-Ansätzen, die sich heute in einer breiten Vielfalt repräsentieren, gemein ist. Allerdings stößt man auch hier wieder auf einen kritischen Punkt.

Lernen als konstitutionelles Element von KI

Wie kann Lernen von einem mathematischen oder ingenieurwissenschaftlichen Standpunkt überhaupt beschrieben werden? Berücksichtigt man die zugrundeliegende Literatur, so wird Lernen als der sogenannte absichtliche oder beiläufige Erwerb von Fähigkeiten verstanden.

Dies muss jedoch nicht unbedingt bewusst geschehen; ebenfalls sind nicht immer alle Voraussetzungen exakt bestimmt, um eine Lernsituation zu beschreiben. Lernen zeichnet sich daher durch einen hohen Grad von Unsicherheit aus. Dies klingt nun fast nach einem gewissen Zirkelschluss: Indem wir Künstliche Intelligenz über Lernprozesse definieren, gestehen wir uns gleichzeitig ein, dass ein hohes Maß an „Unsicherheit“ diesen Vorgang beschreibt. Dies ist ja auch das Spannende an Entwicklungsprozessen und Entwicklungsphänomen.

Wir wollen uns zunächst mit einem einfachen Beispiel beschäftigen, das jedoch leicht „komplex“ genug sein kann.

Autonomes Verhalten, Bild 1

Bild 1: Der digitale Fabrikplanungstisch ermöglicht eine
interaktive zwei- und dreidimensionale Fabriklayoutplanung.


Beherrschung von Unsicherheit: Autonomes Fahren

In den letzten 20 Jahren hat das autonome Fahren eine hohe Aufmerksamkeit innerhalb der KI-Forschung auf sich gezogen. Es ist offensichtlich, dass ein hohes Maß an Unsicherheiten diesen Vorgang begleitet. Gleichzeitig zeigen aktuelle Vorgänge, wie effektiv Lernvorgänge einen solchen Prozess bestimmen.

Innerhalb des autonomen Fahrens lassen sich nun folgende Situationen unterscheiden:

  • Bewegung in einer definierten Umgebung (Straße)
  • Koordination gegenüber anderen Fahrzeugen (Verkehr)
  • Erkennen von Hinweis- bzw. allgemeinen Verkehrsschildern (Interaktion)
  • Erkennen von kritischen Situationen (Fußgängerpassierung)

Der erste Punkt ist heutzutage relativ leicht und effizient zu erlernen. So konnte im Juli 2018 eine Forschergruppe zeigen, dass man innerhalb von 20 Minuten eine Umgebung erfassen kann, wenn nur eine Frontkamera bzw. ein Lenkrad gegeben ist. Der zweite Punkt, die Koordination, wird beispielsweise durch „Connected Car“ basierend auf schnellerer und effizienter Kommunikationstechnologie wie den Mobilfunkstandard 4G in Kombination entsprechender Algorithmen realisiert [1]. Bei den anderen Punkten nimmt der Grad der Wissensbasiertheit deutlich zu. Darauf werden wir im Folgenden vertiefend eingehen. Diese Systeme basieren auf dem Einsatz von statistischen Verfahren, Heuristiken, Verfahren der mathematischen Programmierung und vor allem von (hybriden) Suchalgorithmen, auf die ebenfalls später noch eingegangen werden wird.

Zum Weiterlesen klicken Sie hier


Tags: Autonomes Fahren Autonomie Künstliche Intelligenz Lernen

Das könnte Sie auch interessieren

Zukunftsträchtige Technologien

Fünf Arten der Prozessoptimierung mit Augmented Reality
Die Verschmelzung von digitaler Welt und Realität ist mehr als eine Spielerei und wird durch digitale Technologien wie Augmented Reality greifbar. Immer mehr Unternehmen wollen Prozesse und Abläufe mit 3D-Modellen, Holografien und Datenbrillen hinsichtlich Kosten- und Zeitersparnis optimieren – sei es bei der Entwicklung neuer Produkte, neuer Geschäftsmodelle oder beim Anlernen neuer Fachkräfte.

Prozesse intelligent automatisieren

Mit künstlicher Intelligenz und Robotic Process Automation zum Erfolg
Obwohl Robotic Process Automation (RPA) seit Jahren existiert, ist das Thema aktueller denn je. Für zahlreiche Branchen weltweit hat sich die Technologie als effektiv erwiesen, wann immer es um die Automatisierung manueller, repetitiver und zeitintensiver Prozesse geht. Die Kombination mit künstlicher Intelligenz (KI) zur Automatisierung kognitiver Prozesse macht das Gebiet zunehmend noch attraktiver.

Mit digitalen Zwillingen resilient gegen Krisen

Zentralisierter Informationsaustausch für den Erfolg
Krieg, Klimawandel, Pandemie: Nie zuvor waren Unternehmen so vielen Krisen ausgesetzt wie heute, mit oft negativen Folgen für die Bilanz. Dabei können vorausschauende Maßnahmen, resiliente Prozesse und Frühwarnsysteme die Handlungsfähigkeit unterstützen. Ein digitaler Zwilling erprobt und testet in einer virtuellen Umgebung Geschäftsprozesse in Krisenszenarien und erkennt dadurch Probleme frühzeitig.

Die Pandemie als Innovationstreiber 

Virtual und Augmented Reality in der Industrie
Plötzlich ging es schnell: Die COVID-19-Pandemie zwang Unternehmen aller Branchen regelrecht zu einer beschleunigten digitalen Transformation. Die Situation mag sich mittlerweile normalisiert haben, doch wenn Unternehmen aus dieser Zeit die richtigen Lehren ziehen, können sie auch in Zukunft neue Technologien schneller und erfolgreicher einsetzen, wie bei Virtual- und Augmented-Reality-Projekten.

Dark Factory – Utopie oder Vision?

Die Rolle von Robotern in der menschenleeren Fabrik
„Maschinen und Künstliche Intelligenz werden Fabriken und Produktionsabläufe eines Tages steuern und den Menschen überflüssig machen.“ Derartige Utopien beflügeln Fantasien und Ängste von Führungskräften und Mitarbeitern. Aber ist die „Dark Factory“, die im Wesentlichen eine Fertigung ohne Menschen vorsieht, überhaupt eine realistische und erstrebenswerte Zukunftsvision, wie gerne behauptet wird?

Technologie gegen den Arbeitskräftemangel

Robotik und Wearables erfolgreich einsetzen
Eine Fabrik ohne Menschen – die „Dark Factory“ – wird es auf absehbare Zeit nicht geben. Dennoch nehmen die Forderungen nach mehr Robotik wieder zu. Kündigungswellen, der Fachkräftemangel sowie die Nachwehen der Pandemie befeuern dieses Ansinnen. Und es ist durchaus sinnvoll – nur kommt es auf das richtige Maß an. Vor allem aber sollte die Zusammenarbeit zwischen Mensch und Maschine verbessert werden.